Year 6 Algebra

Algebra

A letter is used in place of a variable or unknown number.

Linear Sequence

A sequence of numbers where each number increases or decreases by the same amount.

Each number in the sequence is called a term.

The change between the numbers is the term-to-term rule.

Missing Numbers

> When a letter is used in algebrato represent a missing value, it is called a variable.

An equation shows are equal using the equals sign.

Simple Formula

A formula is an equation showing a relationship or rule.

$$
\text { area }=\text { length } \times \text { width }
$$

Satisfy Two Variables

In an equation with two unknown numbers, there can be more than one way to satisfy the equation.

$$
a+b=25
$$

$24+1=25$	$10+15=25$	$20+5=25$

We can record the pairs of numbers that satisfy an equation in a table.

\mathbf{a}	24	23	22	21	20	\ldots
\mathbf{b}	1	2	3	4	5	\ldots

Year 6 Fractions

Adding and Subtracting Fractions

When the denominators are the same, you simply add or subtract the numerators.

$$
\frac{2}{5}+\frac{1}{5}=\frac{3}{5}
$$

When the denominators are not the same, find the lowest common denominator and rewrite the fractions. Then, add or subtract the numerators.

$$
\frac{2}{5}+\frac{1}{10}=\frac{4}{10}+\frac{1}{10}=\frac{5}{10}=\frac{1}{2}
$$

Adding and Subtracting Mixed Numbers With mixed numbers, you could convert the mixed number into an improper fraction and then add or subtract as normal.

$$
1 \frac{1}{2}+1 \frac{1}{3}
$$

$$
\frac{3}{2}+\frac{4}{3}=\frac{9}{6}+\frac{8}{6}=\frac{17}{6}
$$

Once you have your final answer, change the improper fraction back to a mixed number.
$\frac{17}{6}=2 \frac{5}{6}$

Multiplying Fractions

$$
\frac{2}{4} \times \frac{3}{6}
$$

$$
\frac{2}{4} \times \frac{3}{6}=\frac{6}{24}
$$

Multiply the numerators. Multiply the Denominators.

$$
\frac{6}{24}=\frac{1}{4}
$$

Simplify the fraction by dividing the numerator and denominator by their lowest common factor.

Dividing Fractions by a Whole Number

$$
\frac{2}{3} \div 2
$$

For $\frac{2}{3}$ we can imagine we have 2 out of 3 slices in a pizza.

Imagine the pizza without the plate.

Decimal Place Value Chart

	Millions	$\frac{2}{0}$$\stackrel{1}{3}$3
	Hundred thousands	
	Ten thousands	
3	Thousands	
6	Hundreds	
8	Tens	
4	Ones	
.	Decimal Point	
2	Tenths	NL00
6	Hundredths	
	Thousandths	
	Ten-thousandths	
	Hundred thousandths	
	Millionths	

Take these slices and share them between 2 plates.

We can see that each plate now has $\frac{1}{3}$ of the original pizza.

Year 6 Decimals

Multiplying Decimals by Whole Numbers

Multiply the hundredths digit in the decimal number by the one-digit number. 5 hundredths $\times 6$ ones $=30$ hundredths $=3$ tenths and 0 hundredths. Write 0 in the answer section and regroup the 3 tenths by writing 3 above the tenths column.

Multiply the tenths digit in the decimal by the one-digit number and add any regrouped tenths. 4 tenths $\times 6$ ones $=24$ tenths +3 tenths $=27$ tenths $=2$ ones and 7 tenths. Write 7 in the answer section and regroup the 2 ones by writing 2 above the ones column. Write the answer in the provided section.

Multiply the ones digit in the decimal number by the one-digit number and add any regrouped ones. 3 ones $\times 6$ ones $=18$ ones +2 ones $=20$ ones $=2$ tens and 0 ones. Write the answer in the provided section.
(5) $3.45 \times 6=20.70$

Year 6 Measurement

Metric Measurements

Volume

3D shapes have volume.
length \times height \times depth $=$ volume

1 mile $=1.6 \mathrm{~km}$

Finding the Area of a Parallelogram

To find the area of parallelogram: multiply the base by the height

$8 \mathrm{~cm} \times 3 \mathrm{~cm}=24 \mathrm{~cm}^{2}$

See how the parallelogram can be changed into a rectangle

Year 6 Measurement

Finding the Area of a Triangle

To find the area of a triangle:
multiply the base \times the height and divide the answer by 2

The area:
$5 \mathrm{~cm} \times 3 \mathrm{~cm}=15 \mathrm{~cm}^{2}$
$15 \mathrm{~cm} \div 2=7.5 \mathrm{~cm}^{2}$
area $=7.5 \mathrm{~cm}^{2}$

Year 6 Multiplication and Division

Factors and Multiples

A multiple is a number that can be divided evenly by a given number.

For example, $12 \times 1=12,12 \times 2$
$=\mathbf{2 4}, 12 \times 3=36$
The multiples of 12 include: 12 , $24,36,48 \ldots$

A factor is a number that is multiplied by another number to get a product.

For example, $12 \div \mathbf{1}=\mathbf{1 2}, 12 \div \mathbf{2}$ = $\mathbf{6}, 12 \div \mathbf{3}=\mathbf{4}$

The factors of 12 are: $1,2,3$, 4,6 and 12 .

Common Factors

A common factor is a number which is a factor of two or more other numbers. For example, 3 is a common factor of 6 and 9 .

Common Multiple

A number which is a multiple of a set of numbers. For example, 16 is a common multiple of 2,4 and 8 .

Prime Numbers

A natural number greater than 1 with no divisors other than 1 and itself.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Year 6 Multiplication and Division

Long Multiplication

Multiplying by a Two-Digit Number
154×26
(1)

Write the numbers above each other in the correct columns.
(2)

First, multiply the ones in the three-digit number by the ones in the two-digit number.

4 ones $\times 6$ ones $=24$ ones $=2$ tens and 4 ones.
Write 4 in the answer section and regroup the
 2 tens by writing 2 above the tens column.
(3)

Next, multiply the tens in the three-digit number by the ones digits in the two-digit number and add any regrouped tens.

5 tens $\times 6=30$ tens +2 tens $=32$ tens $=3$

hundreds and 2 tens
Write 2 in the answer section and regroup the 3 hundreds by writing 3 above the hundreds column.

Finally, multiply the hundreds in the three-
digit number by the ones digits in the two-digit number and add any regrouped hundreds.

1 hundred $\times 6=6$ hundreds +3 hundreds $=$
9 hundreds
Write 9 in the answer section.
(5)

Cross out any previous regroupings.
In the next section, multiply the ones in the three-digit number by the tens in the twodigit number.

Because the calculation involves multiplying by 20, a zero needs to be placed in the right-hand column as a place holder.

4 ones $\times 2$ tens $=8$ tens
Write 8 in the answer sections.

Year 6 Multiplication and Division

Long Multiplication Multiplying by a Two-Digit Number 154×26	
6 Multiply the tens in the three-digit number by the tens in the two-digit number and add any regrouped hundreds. 5 tens $\times 2$ tens $=1$ thousand Write 0 in the answer section and regroup the 1 thousands by writing a 1 above the thousands column. (7) Multiply the hundreds in the three-digit number by the tens in the two-digit number and add any regrouped thousands. 1 hundred $\times 2$ tens $=2$ thousands +1 thousand $=3$ thousands Write 3 in the answer section. (8) Combine the totals using regrouping if required. (9) $154 \times 26=4004$	$1 \not p \not 2$ 154 $\times \quad 26$ 924 080$1 \not p \not 2$ 154 $\times \quad 26$ 924 3080$1 \not p \not 2$ 154 $\times \quad 26$ 924 3080 4004 11

Year 6 Multiplication and Division

Long Division

Dividing by a Two-Digit Number Resulting in a Decimal Answer

$$
591 \div 12
$$

Year 6 Multiplication and Division

Short Division

Dividing by a Two-Digit Number
$5284 \div 12$
(1) $1 2 \longdiv { 5 ^ { 5 } 2 \quad 8 \quad 4 }$

First we divide 5 (thousands) by 12. This gives a result of 0 with a remainder of 5 . The remainder 5 (thousands) is exchanged for 50 hundreds and placed into the hundreds column. This is shown by a small 5 in front of the existing 2 hundreds to make 52 hundreds.
(2) $1 2 \longdiv { 5 ^ { 5 } 2 ^ { 4 } 8 \quad 4 }$

Next, we divide 52 (hundreds) by 12. This gives a result 4 (hundreds) remainder 4 . The remainder 4 (hundreds) is exchanged for 40 tens and placed into the tens column. This is shown by a small 4 in front of the existing 8 tens to make 48 tens. The 4 is written in the hundreds position of the answer above the line.

Next, we divide 48 (tens) by 12. This gives a result of 4. The 4 is written in the tens position of the answer above the line.

(4) 12 | | 4 | 4 | 0 |
| :---: | :---: | :---: | :---: |
| 5 | 2 | 8 | 4 |

Next, divide 4 (ones) by 12. This cannot be done, so there are four remaining. A zero is placed in the ones answer section as well as remainder 4.
$5284 \div 12=440$ r4

Year 6 Number and Place Value

Rounding to 10

Rounding to the nearest 10

Remember: The red digit is the one to consider.

Rounding to 100

Rounding to the nearest 100

Remember: The red digit is the one to consider.

Rounding to 1000

Rounding to the nearest 1000

Remember: The red digit is the one to consider.

Rounding to 10000

Rounding to the nearest 10000

Remember: The red digit is the one to consider.

Rounding to 100000
Rounding to the nearest 10000

Remember: The red digit is the one to consider.

Year 6 Position and Direction

Coordinates

Coordinates can use positive and negative numbers. Whether positive or negative, always write the x-axis coordinate followed by the y coordinate.

Look at the circle point. It is 3 squares along and 4 down. We write this coordinate as $(3,-4)$.

Translate

A shape is moved without rotating or resizing.

Point

A point has no size, only an exact location.

Reflect

A shape is reflected about a line when it is flipped over the mirror line. The shape's size stays the same.

Vertex/Vertices

A vertex is the corner of a shape.
Vertices is more than one vertex.

Year 6 Properties of Shape

Finding Unknown Angles in Shapes
Triangle

Year 6 Properties of Shape

Finding Missing Angles

Parts of a Circle

Angles around a point total 360°
The two known opposite angles total 100°. The two known opposite angles total 246°.
$360^{\circ}-100^{\circ}=260^{\circ}-246^{\circ}=114^{\circ}$
$260^{\circ} \div 2=130^{\circ}$
The missing angle is 130°.

Year 6 Ratio and Proportion

Ratio

Ratio shows the relative sizes of two or more values.
The ratio of yellow spots to blue spots is 3:2.

Proportion

Proportion is a part or share in relation to the whole. $\frac{3}{5}$ are yellow spots.
$\frac{2}{5}$ are blue spots.

Scale and Scale Factor

Scaling is used to enlarge or reduce the size of a shape based on the scale factor.

The scale factor represents the ratio of the lengths of the sides of the shape.

Shape A has been enlarged by scale factor 2 as the length and width of the shape has been doubled.

Solve Ratio and Proportion Problems Involving Unequal Quantities
In a supermarket, washing powder is sold in three sizes:

Buy 4, get one free!

Standard 2.5 kg
Price $£ 3$

$\frac{1}{5}$ off original price

$£ 1.50$ off a box

Mega 20kg
Price $£ 18$

What would be the cheapest way to buy 20 kg of washing powder?

Standard:

$20 \mathrm{~kg} \div 2.5 \mathrm{~kg}$
$=8$ boxes needed,
8-2 (free)
$=6$ boxes
$6 \times £ 3=$
$£ 18$ for 20 kg
Large:
$\frac{1}{5}$ of $£ 10=10 \div 5$
$=£ 2$ (reduction)
$£ 10-£ 2=£ 8 ;$
2 boxes needed:
$£ 8 \times 2=$
$\quad £ 16$ for 20 kg

Large:

$\frac{1}{5}$ of $£ 10=10 \div 5$
= $£ 2$ (reduction)
£10-£2 = £8;
2 boxes needed:
£ $8 \times 2=$
£16 for 20 kg

Mega:

£18-£1.50 = $£ 16.50$ for 20 kg

Year 6 Ratio and Proportion

Use one of these methods to find a percentage of an amount.

Convert to a Decimal

Find 30% of 80

1. Convert the percentage into a decimal.

$$
30 \div 100=0.3
$$

2. Multiply the amount by the decimal.

$$
80 \div 0.3=24
$$

30% of $80=24$

Finding 10\%

Find 70% of 60

1. Find 10% by dividing the amount by 10.

$$
60 \div 10=6
$$

2. Multiply this answer by the number of tens in the percentage.

$$
6 \times 7=42
$$

70% of $\mathbf{6 0}=42$

Convert to a Decimal

Find 18% of 250

1. Find 1% by dividing the amount by 100 .

$$
250 \div 100=2.5
$$

2. Multiply this answer by the number of the percentage.

$$
2.5 \times 18=45
$$

30% of $80=24$

Percent (\%)

Percent means 'out of every 100'.
28% means 28/100.

Year 6 Statistics

Continuous Data

Data that is measured and, therefore, can take on infinite values is continuous.
In continuous data, values between whole numbers can be counted.
In this investigation, it is the length of the shadow that is being measured. This is continuous data because it is possible to record the length as 20.5 cm , etc.

Mean

The mean is the average.

$$
5,5,6,4,7,3
$$

Add all of the values together.

$$
5+5+6+4+7+3=30
$$

Divide the total by the number of values that you added together.

$$
30 \div 6=5
$$

The mean is 5 .

Pie Chart

Pie charts represent data in a circle divided into segments.

A Pie Chart to Show Children's Favourite Fruit

Key			
Blueberries	\square		
Bananas	\square		
Apples	\square		
Raspberries		\quad	24 children were
:---:			
asked in total.			

